UNIVERSITY OF PRETORIA

Procedure for Probabilistic Tsunami Hazard Assessment for Incomplete and Uncertain Data

A. Kijko⁽¹⁾, A. Smit⁽¹⁾, G.A. Papadopoulos ⁽²⁾,

 University of Pretoria Natural Hazard Centre University of Pretoria, South Africa
 National Observatory of Athens, Institute of Geodynamics, Athens, Greece,

International Workshop METSZ 6-8 October 2014, Rhodes, Greece

Contents

- 1. Problem Formulation
- 2. Proposed Methodology
- 3. Examples

Fundamental Question

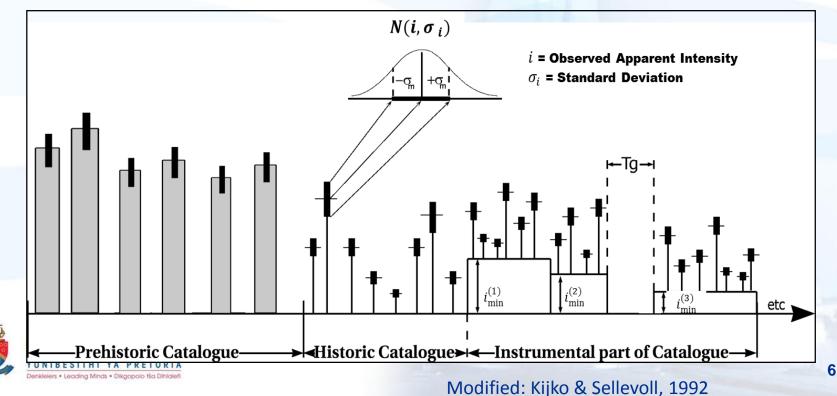
How to assess the likelihood of such an event??

Proposed Approach

 Empirical approach based on tsunami <u>observations</u> which are often incomplete and <u>uncertain</u>.

Alternative to empirical approach is tsunami propagation modelling.
 (Comprehensive review of alternative approaches e.g. Geist, 2009)

Problems Faced Using Only Observations


- 1. Incompleteness of tsunami database.
- 2. Uncertainty in the intensity (magnitude/size) of an event.
- 3. Uncertainty in the applied occurrence model.
- 4. Maximum local/regional tsunami intensity.

Nature of Tsunami Input Data

- Very strong pre-historic events (palaeo) last thousands of years.
- Strongest historic events last few hundred years.
- Recent events in last 100 years (complete catalogue).

Model Parameters

Tsunami hazard described by probabilities and return periods is characterised by 3 parameters:

λ	Mean activity rate of tsunami occurrence
<i>b</i> -value	Ratio between strong and weak intensity tsunamis (equivalent to the frequency-magnitude G-R relation)
i _{max}	Upper limit of tsunami intensity (or tsunami run-up)

Proposed PTHA Model

The proposed methodology addresses:

- A. Temporal distribution.
- B. Intensity distribution.
 - Discrepancy between data and occurrence model.
- C. Combination of Extreme and Complete catalogues.

A. Temporal Distribution of Tsunamis

9

Prob [n tsunami events, observed in time interval t along a coast]

$$p(n|\lambda,t) = \frac{(\lambda t)^n}{n!} \exp(-\lambda t) \quad n = 0,1, \dots$$

Poisson-Gamma PDF

where

$$p(n|\lambda,t) = \frac{\Gamma(n+q_{\lambda})}{n!\,\Gamma(q_{\lambda})} \left(\frac{p_{\lambda}}{t+p_{\lambda}}\right)^{q_{\lambda}} \left(\frac{t}{t+p_{\lambda}}\right)^{n}$$

B. Distribution of Tsunami Intensity

Assume

- Observed intensity *i* = unknown "true" intensity + random error
- Random error can be significant ~ Gaussian (0, SD)

(Tinti & Mulargia, 1985)

Intensity of tsunami occurrence often very uncertain

...especially for palaeo and historic events

B. Distribution of Tsunami Intensity

Assume

Tsunami run-up heights (h in meters) follows negative exponential distribution similar to G-R relationship

Soloviev (1969) introduced a frequency-size distribution $\lambda = a \times 10^{-bi}$

were a and b are regression coefficients.

• Intensity *i* can be linked with tsunami run-up (h) along a coastline

 $i = \log_2(\sqrt{2h})$

B. Distribution of Tsunami Intensity

CDF of tsunami intensity $f_{\rm I}(i) = \begin{cases} 0 & \iota_{\min} < \iota \\ \frac{\beta \exp[-\beta(i - i_{\min})]}{1 - \exp[-\beta(i_{\max} - i_{\min})]} & \text{for } i_{\min} \le i \le i_{\max} \\ 0 & \dots & i > i_{\max} \end{cases}$ $i_{\min} < i$ Compound CDF $f_{\rm I}(i|i_{\rm min}) = \left[1 - \left(\frac{q_{\beta}}{q_{\beta} + \bar{\beta}(i_{\rm max} - i_{\rm min}}\right)^{q_{\beta}}\right]^{-1} \left[\bar{\beta}\left(\frac{q_{\beta}}{q_{\beta} + \bar{\beta}(i - i_{\rm min})}\right)^{q_{\beta}+1}\right]$

e
$$q_{\beta} = \bar{\beta} p_{\beta}$$

12

C. Combination of Catalogues

For each part of tsunami catalogues build likelihood function:

- $L_{Paleo}(\theta) = likelihood function based on palaeo tsunamis$
- $L_{\text{Historic}}(\boldsymbol{\theta}) =$ likelihood function based on **historic** tsunamis
- $L_{\text{Complete}}(\theta) =$ likelihood function based on **complete** tsunami catalogues

Total likelihood function:

$$L(\boldsymbol{\theta}) = L_{\text{Paleo}}(\boldsymbol{\theta}) \times L_{\text{Historic}}(\boldsymbol{\theta}) \times L_{\text{Complete}}(\boldsymbol{\theta})$$

Parameter Estimation of λ and β

 $L(\boldsymbol{\theta}) = L_{\text{Paleo}}(\boldsymbol{\theta}) \times L_{\text{Historic}}(\boldsymbol{\theta}) \times L_{\text{Complete}}(\boldsymbol{\theta})$

Obtain parameter estimates $\bar{\lambda}$ and $\bar{\beta}$ through the

Maximum Likelihood Estimation Method

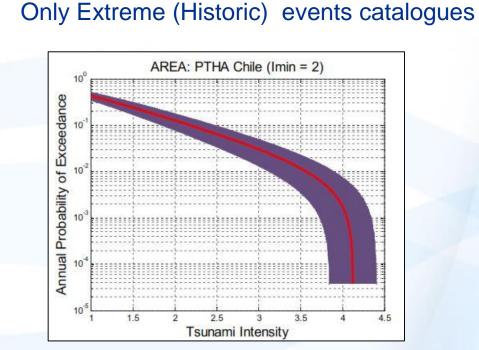
which for given i_{max} maximizes the likelihood function $L(\theta)$.

Obtained by solving:

$$\begin{bmatrix} \frac{\partial \ln[L(\boldsymbol{\theta})]}{\partial \bar{\lambda}} \\ \frac{\partial \ln[L(\boldsymbol{\theta})]}{\partial \bar{\beta}} \end{bmatrix} = 0 \quad \text{where } \boldsymbol{\theta} = (\bar{\lambda}, \bar{\beta}, i_{\max})$$

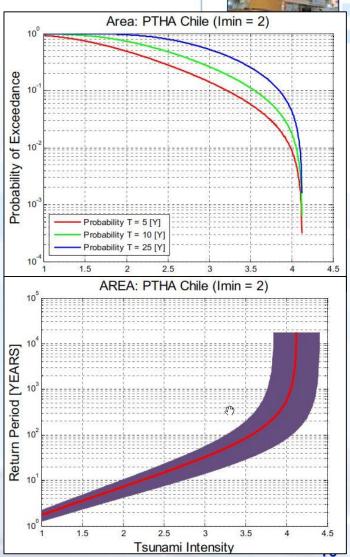
Parameter Estimation of i_{max}

Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi


$$i_{max} = i_{max}^{obs} + \Delta$$

where
$$\Delta = \frac{\delta^{1/q_{\beta}} \exp[nr^{q_{\beta}}/(1-r^{q_{\beta}})]}{\bar{\beta}} \left[\Gamma\left(-\frac{1}{q_{\beta}}, \delta r^{q_{\beta}}\right) - \Gamma\left(-\frac{1}{q_{\beta}}, \delta\right) \right]$$

(Kijko, 2004; Kijko and Singh, 2011)


•
$$r = \frac{p_{\beta}}{p_{\beta} + i_{max} - i_{min}}$$

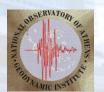
• $C_{\beta} = \left[1 - \left(\frac{q_{\beta}}{q_{\beta} + \overline{\beta}(i_{max} - i_{min})}\right)^{q_{\beta}}\right]^{-1}$
• $\delta = nC_{\beta}$
• $p_{\beta} = \overline{\beta}/\sigma_{\beta}^{2}$ & $q_{\beta} = \left(\overline{\beta}/\sigma_{\beta}\right)^{2}$
 $\Gamma(\cdot, \cdot) = \text{complementary Incomplete Gamma Function (Abramowitz and Stegun, 1970)}$

Example 1: Chilé

Tsunami database of Dr V.K. Gusiakov, Institute of Computational Mathematics and Geophysics, Siberian Division, Russian Academy of Sciences, Russia

Example 2: Areas surrounding Greece

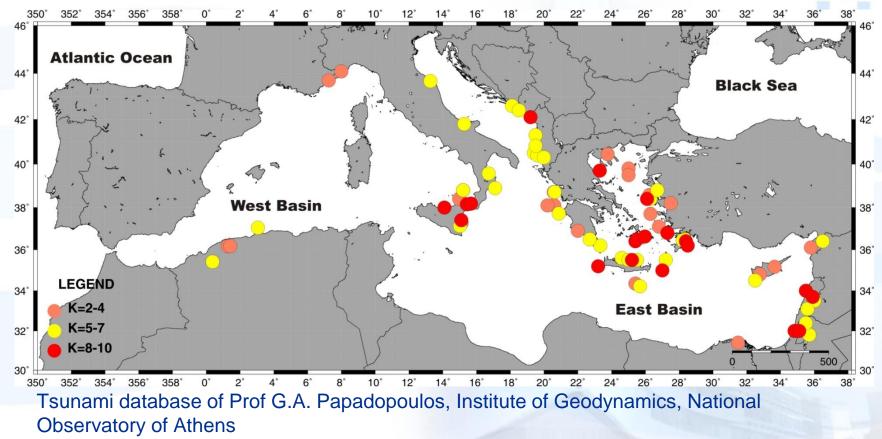
Extreme (historic) and complete events catalogues for


•Hellenic Arc

•Corinth Gulf

•Mediterranean Sea

Tsunami database of Prof G.A. Papadopoulos, Institute of Geodynamics, National Observatory of Athens, Greece.



Applied Tsunami Catalogue

1620 BC – present – Mediterranean Sea

Applied Tsunami Catalogue

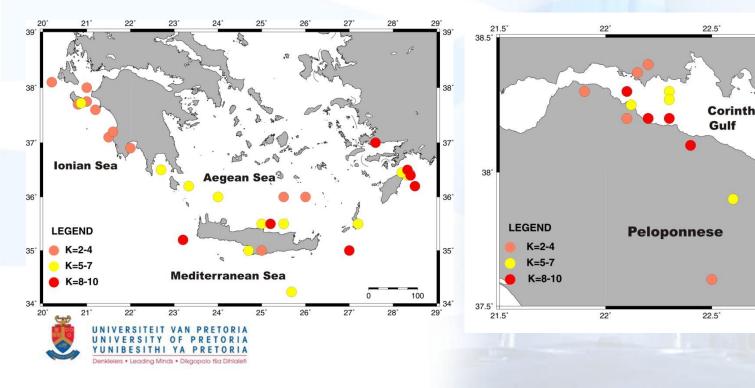
23

ERVATOR

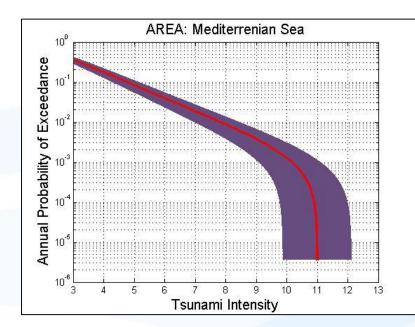
20

19

30.

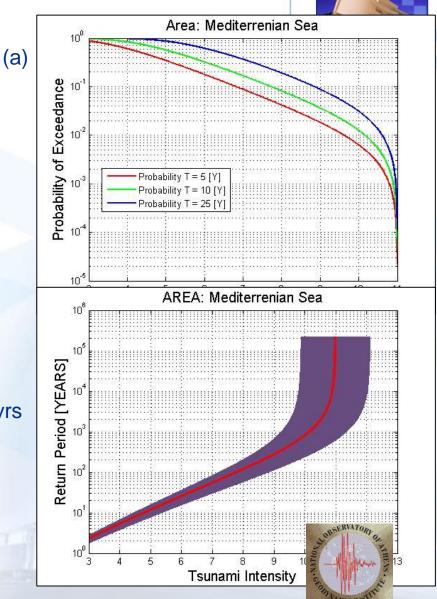

37.5°

23.5


Greek Mainland 1620 BC – present – Hellenic Arc373 BC – present – Corinth Gulf

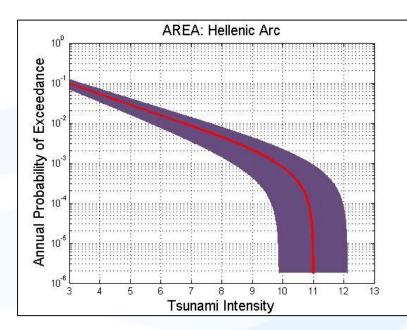
Hellenic Arc

Corinth Gulf

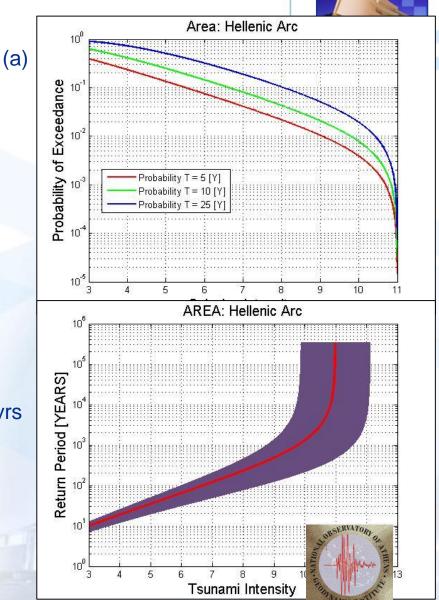


Results: Mediterranean Sea

- a. Annual probability of exceedance
- b. Probability of exceedance for 5, 10 and 25 yrs
- c. Mean return period

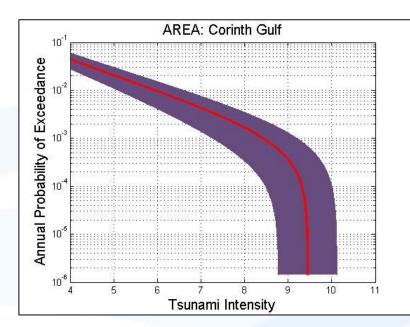


(b)

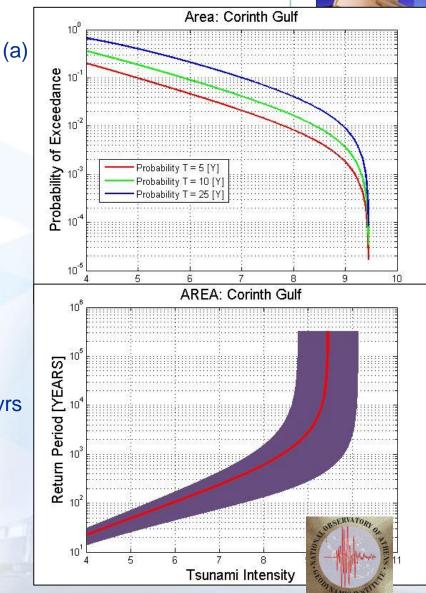

(C)

Results: Hellenic Arc

- a. Annual probability of exceedance
- b. Probability of exceedance for 5, 10 and 25 yrs
- c. Mean return period

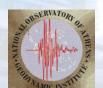


(b)


(C)

Results: Corinth Gulf

- a. Annual probability of exceedance
- b. Probability of exceedance for 5, 10 and 25 yrs
- c. Mean return period


(C)

Mean Return Periods

Return Period	Intensity 5.0	Intensity 9.0
Mediterranean Sea	11.7 yrs	271 yrs
Hellenic Arc	34.6 yrs	477 yrs
Corinth Gulf	48.2 yrs	2800 yrs

Conclusions

- A new procedure for PTHA has been developed to calculate the tsunami hazard for a specified region that caters for incomplete and uncertain data.
- The procedure:
 - permits the assessment of the maximum likelihood estimates of the key tsunami hazard parameters.
 - is flexible and allows for the use of palaeo, historic and complete tsunami catalogues.
- Do not need an extensive and complete events catalogue

References

- Geist, E.L., 2009, Phenomenology of tsunamis: Statistical properties from generation to runup, Advances in Geophysics, v. 51, p. 107-169
- Kijko, A. (2004). Estimation of the maximum earthquake magnitude mmax, *Pure Appl. Geophys*, **161**, pp. 1-27.
- Kijko, A., Sellevoll, M.A. (1992). Estimation of earthquake hazard parameters from incomplete data files, Part II, Incorporation of magnitude heterogeneity. *Bull. Seism. Soc. Am.* 82, pp. 120-134.
- Kijko, A., Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. *Acta Geophysica*, **59**, pp. 674-700
- Soloviev, S. L. (1969).Recurrence of tsunamis in the Pacific. In: "Tsunamis in the Pacific Ocean" (W.M. Adams, Ed.), pp. 149-164. *East-West Center Press*, Honolulu.

Tinti, S. Mulargia, F. (1985). Effects of magnitude uncertainties in the Gutenberg-Richter frequency-magnitude law. *Bull. Seism. Soc. Am.* **75**, pp. 1681-1697.

