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Fundamental Question

How to assess the likelihood of such an event??
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Proposed Approach

 Empirical approach based on tsunami observations which are often 

incomplete and uncertain.

 Alternative to empirical approach is tsunami propagation modelling. 

(Comprehensive review of alternative approaches e.g. Geist, 2009)
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1. Incompleteness of tsunami database.

2. Uncertainty in the intensity (magnitude/size) of an event.

3. Uncertainty in the applied occurrence model.

4. Maximum local/regional tsunami intensity.

Problems Faced Using Only Observations



 Very strong pre-historic events (palaeo) – last thousands of years.

 Strongest historic events – last few hundred years.

 Recent events – in last 100 years (complete catalogue).

Modified: Kijko & Sellevoll, 1992
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Nature of Tsunami Input Data
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Model Parameters

 Tsunami hazard described by probabilities and return periods is 

characterised by 3 parameters:

𝜆 Mean activity rate of tsunami occurrence

𝑏-value Ratio between strong and weak intensity tsunamis  

(equivalent to the frequency-magnitude G-R relation)

𝑖max Upper limit of tsunami intensity (or tsunami run-up)



Proposed PTHA Model

The proposed methodology addresses:

A. Temporal distribution.

B. Intensity distribution.

Discrepancy between data and occurrence model.

C. Combination of Extreme and Complete catalogues.
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A. Temporal Distribution of Tsunamis

Prob [𝒏 tsunami events, observed in time interval 𝒕 along a coast]

𝑝 𝑛 𝜆, 𝑡 =
𝜆𝑡 𝑛

𝑛!
exp(−𝜆𝑡) 𝑛 = 0,1, …

Poisson-Gamma PDF
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𝑝 𝑛|𝜆, 𝑡 =
𝛤 𝑛 + 𝑞𝜆
𝑛! 𝛤(𝑞𝜆)

𝑝𝜆
𝑡 + 𝑝𝜆

𝑞𝜆 𝑡

𝑡 + 𝑝𝜆

𝑛

where

• 𝑝λ =   𝜆 𝜎λ
2

• 𝑞λ =  𝜆𝑝λ



Assume 

• Observed intensity 𝑖 = unknown “true” intensity +  random error

• Random error can be significant ~ Gaussian (0, SD)

(Tinti & Mulargia, 1985)

• Intensity of tsunami occurrence often very uncertain

…especially for palaeo and historic events
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B. Distribution of Tsunami Intensity



B. Distribution of Tsunami Intensity

Assume

Tsunami run-up heights (ℎ in meters) follows negative exponential 

distribution similar to G-R relationship                                  

 Soloviev (1969) introduced a frequency-size distribution 

𝜆 = 𝑎 × 10−𝑏𝑖

were 𝑎 and 𝑏 are regression coefficients.

 Intensity 𝑖 can be linked with tsunami run-up (ℎ) along a coastline                                   

𝑖 = 𝑙𝑜𝑔2( 2ℎ)
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CDF of tsunami intensity

Compound CDF
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B. Distribution of Tsunami Intensity

where      𝑞𝛽 =  𝛽𝑝𝛽

𝑓I 𝑖|𝑖min = 1 −
𝑞β

𝑞β +  𝛽(𝑖max − 𝑖min

𝑞β −1

 𝛽
𝑞β

𝑞β +  𝛽 𝑖 − 𝑖min

𝑞β+1

𝑓I 𝑖 =

0 𝑖min < 𝑖

𝛽exp −𝛽 𝑖 − 𝑖min

1 − exp −𝛽 𝑖max − 𝑖min
for 𝑖min ≤ 𝑖 ≤ 𝑖max

0 𝑖 > 𝑖max



For each part of tsunami catalogues build likelihood function:

• 𝐿Paleo 𝜽 = likelihood function based on palaeo tsunamis

• 𝐿Historic 𝜽 = likelihood function based on historic tsunamis 

• 𝐿Complete 𝜽 = likelihood function based on complete tsunami catalogues 

Total likelihood function:

𝐿 𝜽 = 𝐿Paleo 𝜽 × 𝐿Historic 𝜽 × 𝐿Complete 𝜽
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C. Combination of Catalogues



𝐿 𝜽 = 𝐿Paleo 𝜽 × 𝐿Historic 𝜽 × 𝐿Complete 𝜽

Obtain parameter estimates  𝜆 and  𝛽 through the

Maximum Likelihood Estimation Method

which for given 𝑖max maximizes the likelihood function 𝐿(𝜽). 

Obtained by solving: where 𝜽 = (  𝜆,  𝛽, 𝑖max)
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Parameter Estimation of 𝝀 and 𝜷

𝜕ln[𝐿(𝜽)]

𝜕  𝜆

𝜕ln[𝐿(𝜽)]

𝜕  𝛽

= 0



Parameter Estimation of 𝒊𝐦𝐚𝐱

where

(Kijko, 2004; Kijko and Singh, 2011)

𝑖𝑚𝑎𝑥 = 𝑖max
𝑜𝑏𝑠 + Δ

 𝑟 =
𝑝𝛽

𝑝𝛽+𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛  𝐶β = 1 −
𝑞β

𝑞β+ 𝛽(𝑖max−𝑖min

𝑞β −1

 𝛿 = 𝑛𝐶𝛽  𝑝β =   𝛽 𝜎β
2 &      𝑞β =   𝛽 𝜎𝛽

2

𝛤 ∙,∙ = complementary Incomplete Gamma Function (Abramowitz and

Stegun, 1970)
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𝛥 =
𝛿1/𝑞𝛽exp 𝑛𝑟𝑞𝛽/ 1 − 𝑟𝑞𝛽

 𝛽
𝛤 −

1

𝑞𝛽
, 𝛿𝑟𝑞𝛽 − 𝛤 −

1

𝑞𝛽
, 𝛿



Example 1: Chilé
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Only Extreme (Historic) events catalogues

Tsunami database of Dr V.K. Gusiakov, 

Institute of Computational Mathematics and 

Geophysics, Siberian Division, Russian Academy 

of Sciences, Russia



Example 2: Areas surrounding Greece
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Extreme (historic) and complete events catalogues for

•Hellenic Arc

•Corinth Gulf

•Mediterranean Sea

Tsunami database of Prof G.A. Papadopoulos, 

Institute of Geodynamics,  National Observatory of Athens, Greece.
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Applied Tsunami Catalogue

Tsunami database of Prof G.A. Papadopoulos, Institute of Geodynamics, National 

Observatory of Athens

1620 BC – present – Mediterranean Sea
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1620 BC – present – Hellenic Arc

373 BC – present – Corinth Gulf

Applied Tsunami Catalogue  

Hellenic Arc         Corinth Gulf
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Results: Mediterranean Sea

a. Annual probability of exceedance

b. Probability of exceedance for 5, 10 and 25 yrs

c. Mean return period

(a) (b)

(c)
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Results: Hellenic Arc

a. Annual probability of exceedance

b. Probability of exceedance for 5, 10 and 25 yrs

c. Mean return period

(a) (b)

(c)
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Results: Corinth Gulf

a. Annual probability of exceedance

b. Probability of exceedance for 5, 10 and 25 yrs

c. Mean return period

(a) (b)

(c)
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Mean Return Periods

Return Period Intensity 5.0 Intensity 9.0

Mediterranean Sea 11.7 yrs 271 yrs

Hellenic Arc 34.6 yrs 477 yrs

Corinth Gulf 48.2 yrs 2800 yrs



Conclusions

• A new procedure for PTHA has been developed to calculate the tsunami 

hazard for a specified region that caters for incomplete and uncertain data.

• The procedure:

 permits the assessment of the maximum likelihood estimates of the key 

tsunami hazard parameters.

 is flexible and allows for the use of  palaeo, historic and complete tsunami 

catalogues.

• Do not need an extensive and complete events catalogue 
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