

Near-Field Tsunami Early Warning and Preparedeness in the Mediterranean: the EU NEARTOWARN Project

G. A. Papadopoulos (1), V. Karastathis (1), T. Novikova (1), A. Fokaefs (1), G. Minadakis (1), A. Papageorgiou (1), D. Ayiakatsikas (1), S. Liakopoulos (1), S. Tinti (2), A. Armigliato (2), M. A. Paparo (2), F. Zaniboni (2), G. C. Georgiou (3), Z. Kountouriotis (3), Í. Aniel-Quiroga (4), M.Gonzalez (4), J.A. Álvarez-Gómez (4), O. Lesne (5), C. Renou (5), A. Mangin (5), F. Schindele (6), I. Argyris (7), S. Aggelou

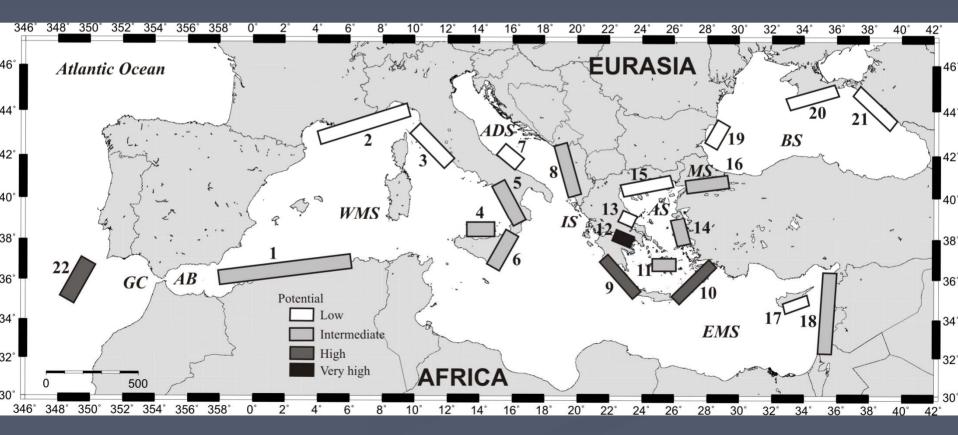
(1) Institute of Geodynamics, National Observatory of Athens, 11810 Athens, Greece
 (2) Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Italy
 (3) Oceanography Center, University of Cyprus, Cyprus
 (4) Environmental Hydraulycs Institute of Cantabria (IH Cantabria), Unitω. de Cantabria, Spain.
 (5) ACRI-ST, Sophia-Antipolis, France.
 (6) Commissariat à l'énergie atomique/ DIF/DASE/STMG, Bruyères-le-Châtel, 91297 ARPAJON Cedex, France.
 (7) Civil Protection Unit, Municipality of Rhodes, Rhodes, Greece.

Beneficiary and Partners EU DG-ECHO

Coordinating Beneficiary:

 Institute of Geodynamics, National Observatory of Athens (NOAGI) Dr. Gerassimos A. Papadopoulos

Associated Beneficiaries:


- Universita Di Bologna (UNIBO, Italy) Prof. Stefano Tinti
- University of Cyprus (OC-UCY, Cyprus) Prof. Georgios Georgiou
- ACRI-ST SAS (Sophia Antipolis, France) Dr Olivia Lesne
- Univesidad de Cantabria (UC, Spain) Assoc. Prof. Mauricio González
- Municipality of Rhodes (MOR, Greece) MSc Ilias Argyris

<u>Total Duration:</u> 24 months (2012 - 2013), Completed 31.12.2014

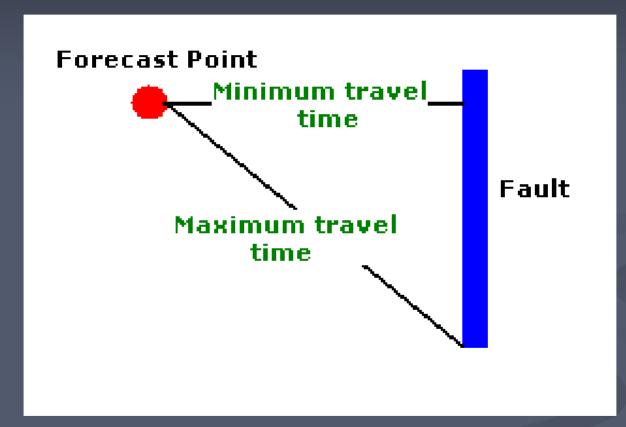
Project http://www.neartowarntsunami.com/

Tsunamigenic Zonation Map in the Mediterranean and Connected Seas

(Papadopoulos et al., Marine Geology, 2014,)

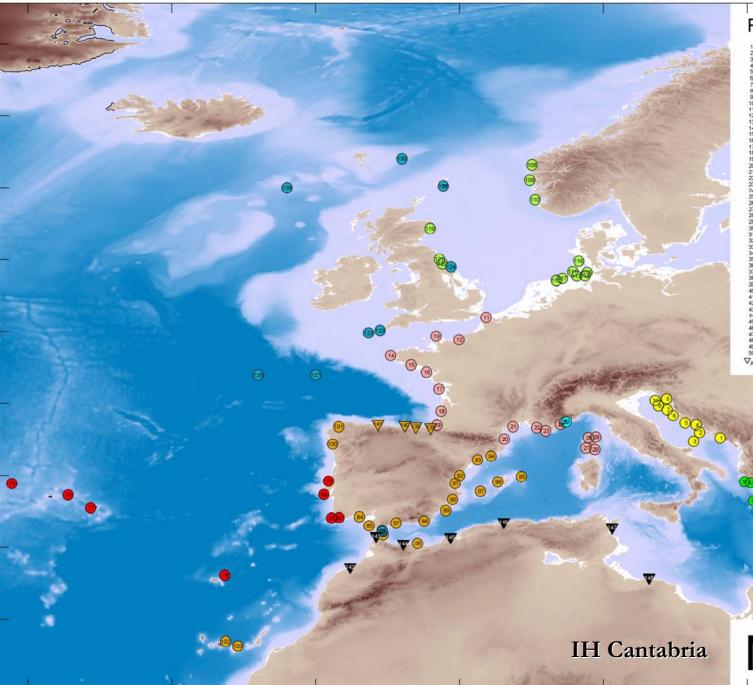
Warning in near-field

- Assuming seismic signal is transmitted automatically, then
- $= ttr > tSD + \{tED + tEI + tER\}$
- *tSD* = time for EQ determination
- tED = time for making tsunami desicion
- tEI = time for tsunami information to population
- \blacksquare *tER* = time to run away


NEED TO MINIMIZE TIME OF WARNING!

Main Tasks of the Project

1. Supporting actions of interest for the entire NEAM region


- Improvement of tsunami zonation in Mediterranean (NOA)
- A Comprenhensive state-of-the-art report on TWS's (ARCI-ST)
- Data base and Mapping of tsunami travel times in NEAM (IH Cantabria)
- Standardization of data bases of pre-simualated tsunamis (UNIBO)
- Improvement of infrustructure for a future TWS in Cyprus (UC)

A data base of near-field domains in NEAM

Max. and min. travel times from source to forecast point: ray propagation theory

IH Cantabria

FORECAST POINTS

1. Dubrovnik	51. Kerkira_Pelekas	101. A Coruña
2. Vela Luka	52. Cephalonnia_Argostoli	102. Sta. Cruz de Tenerife
3. Palagruza	53. Igoumenitsa	103. Las Palmas de Gran
4. Split	54 Chios Vollisos	104. Lattakia I
5. Zirje	55. Lesvos_Sigri	105. Lattakia II
6. Veli Rat (Dugi Otok)	56. Lesvos Molivos	106. Tartous I
7. Mali Losinj	57. Limnos Mirina	107. Tartous II
8. Rijeka	58. Samothraki	108. Floro
9. Pula	59. Ikaria_Agios_Kirikos	109. Blomoy
10. Porec	60. Kalogeroi	110. Karmoy
11. Calais	61 Kastelorizo Megisti	111. Helgoland
12. Le Havre	62 Naxos Chora	112. Borkum
13. Cherbourg	63. Milos_Adamas	113. Alte Weser
14. Le Conquet	64. Mikonos_Chora	114. Cuxhaven
15. Lorient	65. Tinos	115. Büsum
16. Saint-Nazarie	66 Andros	116. Westerland
17. Oléron	67. Siros Ermoupoli	117. Nordemey
18. Biscarosse	68. Amorgos_Katapola	118. Lerwick
19. Bayonne	69. Gavdos_Karave	119. Aberdeen
20. Port Vendre	70. Evia Kimi	120. Hartlepoint
21. Séte	70. Evia_killi 71. Volos	121. North Shields
22. Marseille	72. Skiathos	122. Newlyn
23. Toulon	73. Katerini	123. St Mary's
24 Cannes	74 Thassos	123. St marys 124. Whitby
25 Nice	75. Flores	125. Lerwick
26. L'île Rousse		
	76. Angra	126. Gibraltar
27. Ajaccio 28. Bastia	77. Ponta Dalgada 78. Porto Santo	127. Offshore1 128. Offshore2
29. Solenzara	79. Nazaré	129. Offshore3
30. Rethimnon	80. Cascais	130. Offshore4
31. Chania	81. Vila do bispo	131. Sinop
32. Agios_Nikolaos	82. Armação de pera	132. Bodrum
33. Siteia	83. Monaco	133. Fethiyr
34. lerapetra	84. Huelva	134. Antalya
35. Chora_Sfakion	85. Cádiz	135. Iskenderun
36. Kithera_Kapsali	86. Algeciras	136. Kusadasy
37. Santorini_Ormos_Firon	87. Málaga	137. Cesme
38. Kos_Kefalos	88. Almeria	138. San Sebastian
39. Samos_Karlovasi	89. Cartagena	139. BILBAO
40. Lesvos_Mitilini	90. Alicante	140. Santander
41. Karpathos_Mesochori	91. Valencia	141. Gijon
42. Rhodos_Town	92. Castellón de la Plana	142. Casablanca
43. Rhodos_Lindos	93. Tarragona	143. Tanger
44. Kalimnos_Panormos	94. Barcelona	144. Al Hoceima
45. Githeion	95. Mahón	145. Oran
46. Monemvasia	96. Palma de Mallorca	146. Alger
47. Kiparissia	97. Ibiza	147. Hammamet
48. Katakolo	98. Melila	148. Tripoli
49. Patra	99. Ceuta	149. Tobruk
50. Zakinthos	100. Vigo	150. Puerto Said

VAdditional suggested forecast point

NEAMTW

Fault zones from TRANSFER

X

Fault Name = Amargos-South Aegean Earthquake

Longitude = 24,92

Latitude = 36,69

Length = 100000

Width = 15557

Strike = 65

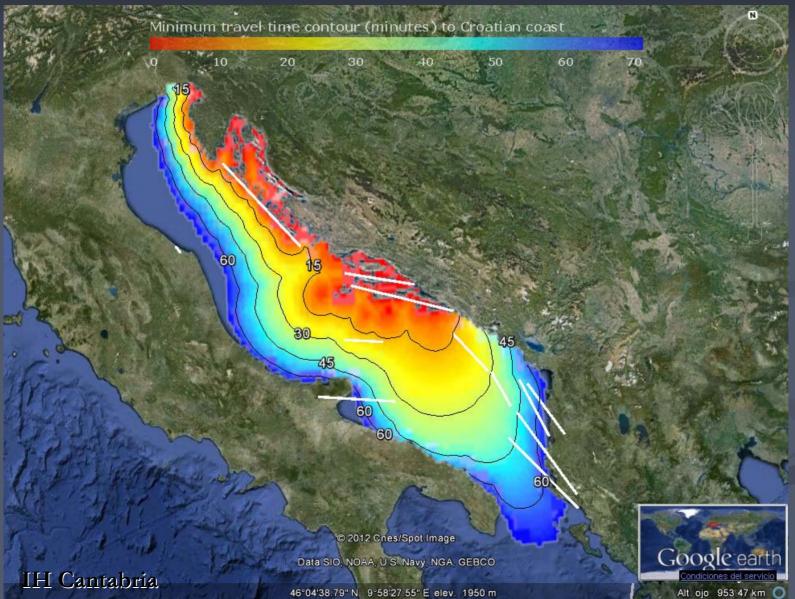
Dip = 40

Rake = 270

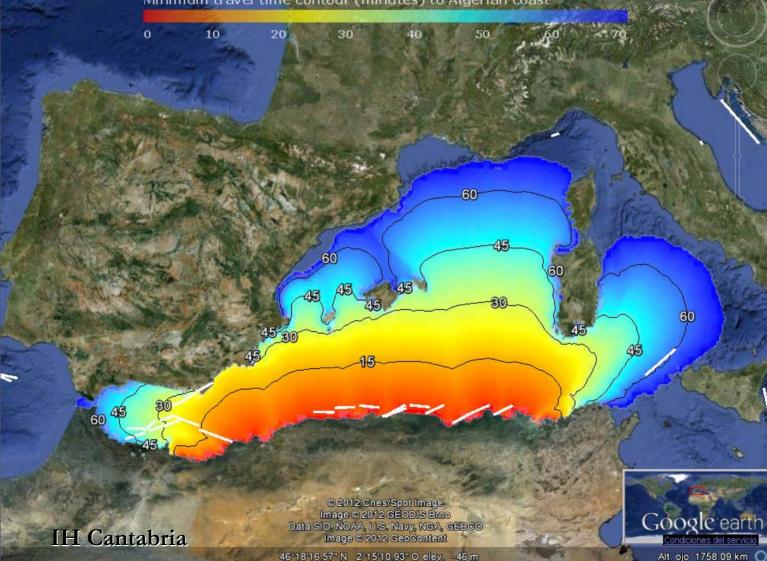
Max. Magnitude = 7,5

Probable Historical Event = 09/07/1956 3:11:42

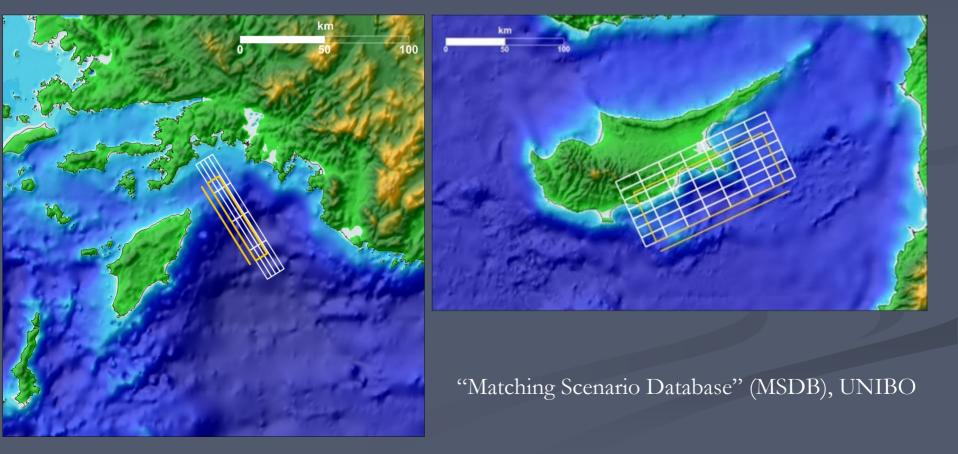
© 2012 Cnes/Spot Image Image U.S. Geological Survey Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2012 TerraMetrics


36°42'09.52" N 24°50'22.92" E elev. -159 m

IH Cantabria


🔰 Alt, ojo 2017.12 km 🔵

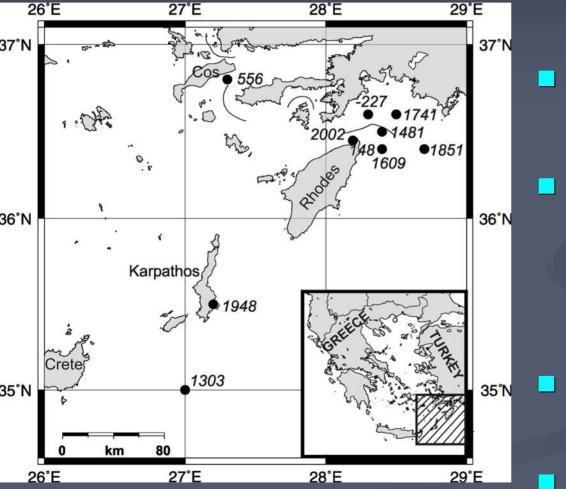
TS travel times in Adriatic Sea



TS travel times in North Algeria

Minimum travel time contour (minutes) to Algerian coast

A prototype Data Base for presimulated tsunami scenarios

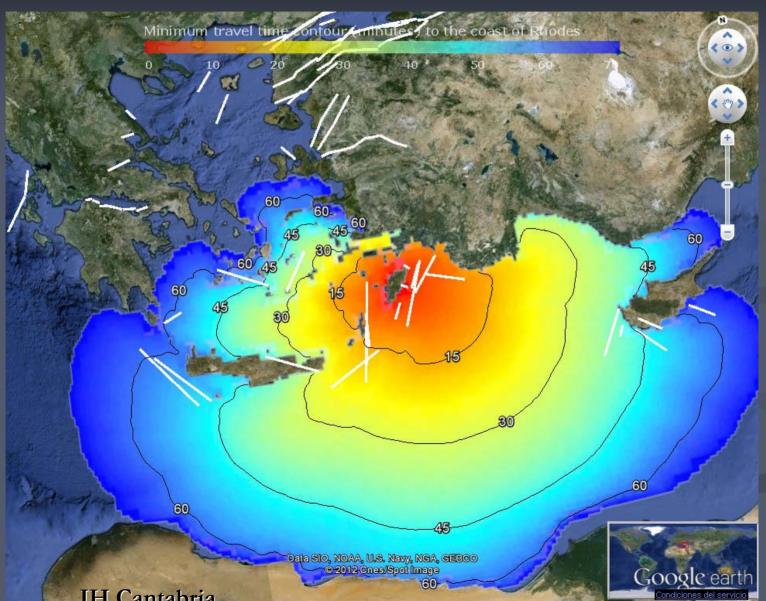

A prototype Data Base for presimulated tsunami scenarios

time series of water elevation and velocity components computed

- in all the relevant forecast points and
- in all the grid points having a depth lower than a given threshold, or comprised in a given depth interval
- wave elevation fields every k minutes over a suitably chosen simulation time
- arrival time fields (first positive of the wave elevation, first negative, time of arrival of the maximum and of the minimum)
- extreme wave elevation fields
- extreme velocity (x,y-components, modulus-angle) fields.

"Matching Scenario Database" (MSDB), UNIBO

Test site of Rhodes



Very high seismicity

Several historical tsunamis (AD 148, 1303, 1481, 1609, 1741, 1851)

 Master test site along with Fetiye
 EU FP6 TRANSFER

TS travel times in Rhodes

Main Tasks of the Project

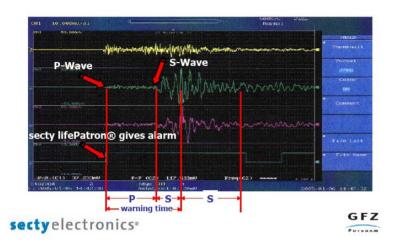
2. Development of an operational local TWS in Rhodes (NOA, MoR)

- Creation of a network of Seismic Early Warning Devices
- Installation of 2 radar-type tide-gauges
- Development of a Local Tsunami Decision Matrix for Rhodes (NOA)
- Data base of tsunami travel times in Rhodes (IH Cantabria)
- Standardization of data bases of pre-simualated tsunamis (UNIBO)
- Organization of a Geographical Management System

Main components of the system

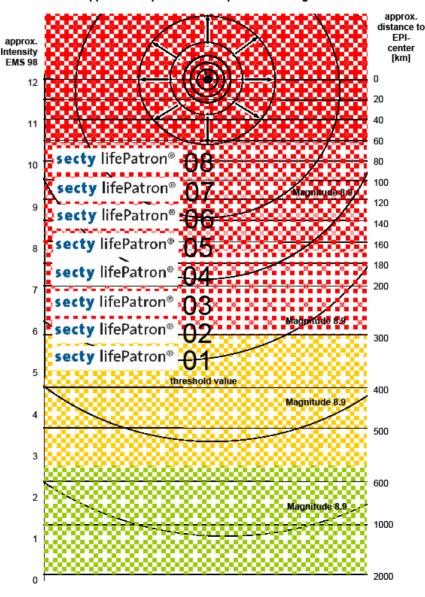
Upstream Component

- Seismic Alert network
- Tide-gauge network
- Pre-simulated tsunami scenarios


Downstream Component

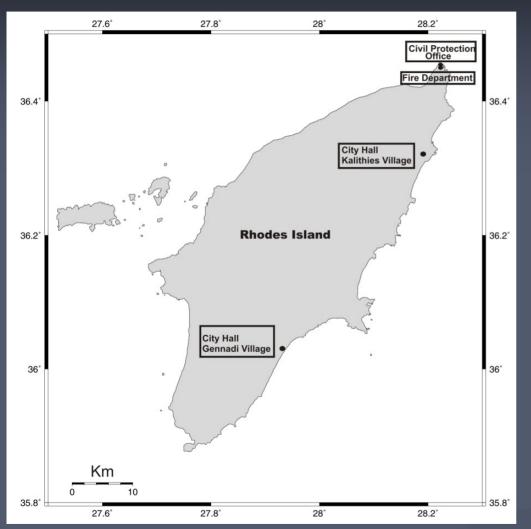
Alerting civil protection in Rhodes
 Geographical Management System

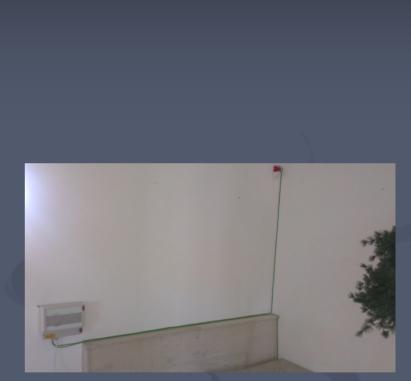
Alerting Population

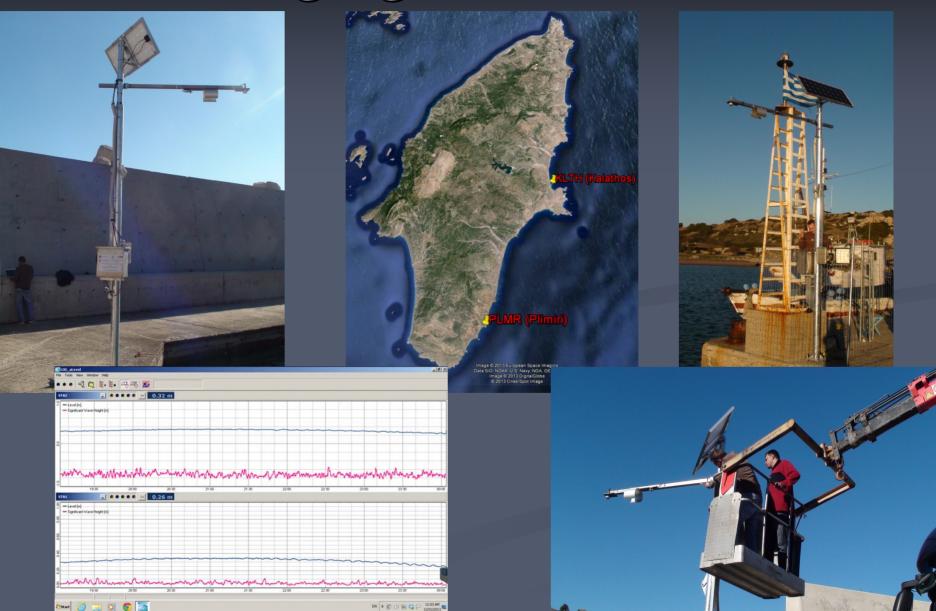

Seismic Alert Devices (SAD's) for SEW

Earthquake: Turkey/ Düzce, Nov.1999

Approx. example of an earthquake of 8.9 Magnitude

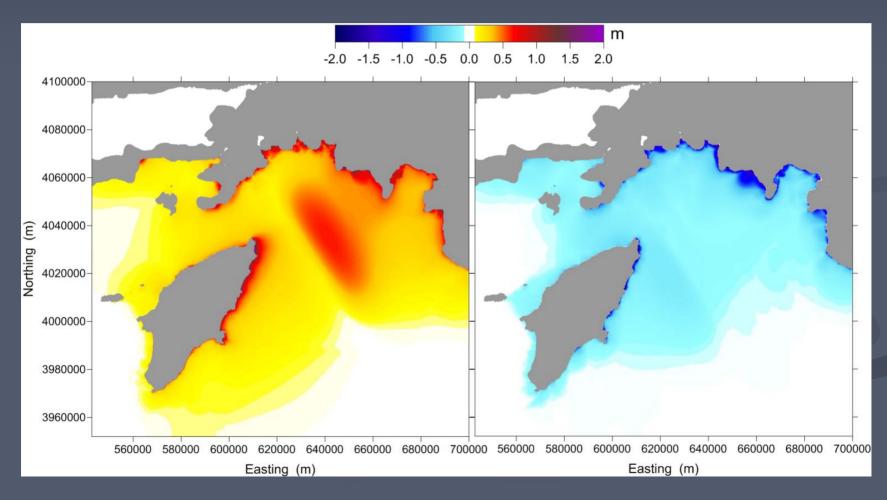


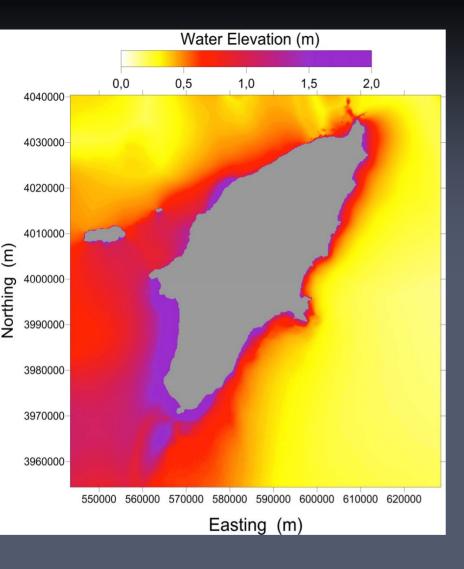

Seismic Alert Network 4 stations in Rhodes/8 sensors



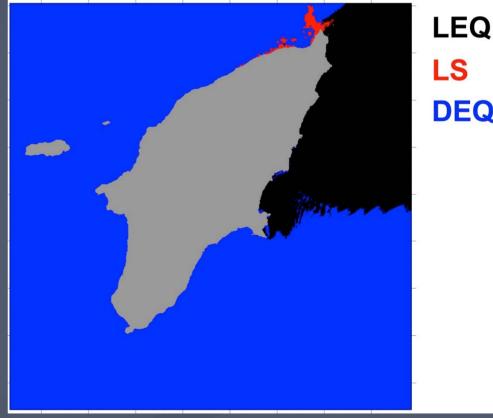
Seismic Alert Network

Tide-gauge sites in Rhodes




Geographical Management System

Web-based, open access to multiple users
GIS layers of background information (topography, road maps, critical facilities etc.)
Tsunami hazard/vulnerabilitiy/risk maps
Pre-simulated tsunami scenarios and more

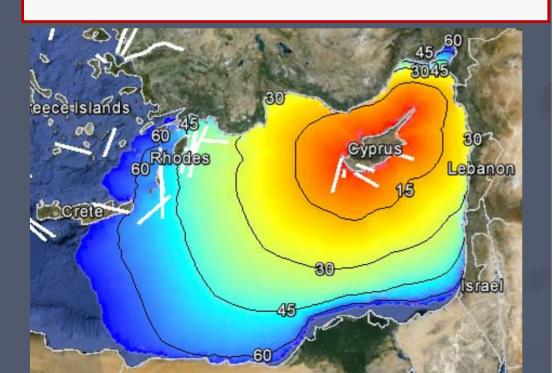

Extreme wave elevation fields Local Earthquake (LEQ) Scenario

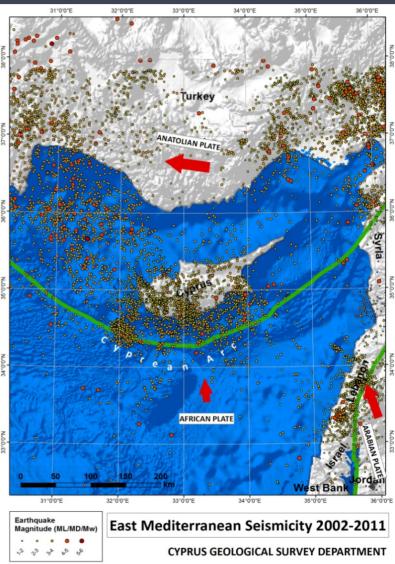
(Tinti et al., UNIBO)

Scenarios aggregate (Tinti et al., UNIBO)

Local Seismic & Tsunami Early Warning System in Rhodes: how it works?

Seismic Alert Devices are triggered in less than 25 sec with EQ's of M≥6 at distance up to 100 km
 Civil Protection mobilizes immediately
 Sea level records provide a secondary support
 Geographical Management System for crisis management




University of Cyprus Oceanography Centre

Prospects of a local tsunami warning system

A dense network of tide-gauges is in place
 Need seismic alert devices activated when a strong earthquake is detected
 Need a Geographical Management System

Thanks for coming in Rhodes!

International Workshop on Mega Earthquakes & Tsunamis in Subduction Zones -Forecasting Approaches and Implications for Hazard Assessment

Rhodes Isl., 6-8 Oct. 2014