

AN EXTENDED HOMOGENEOUS QUICK-LOOK TSUNAMI CATALOGUE FOR THE EUROPEAN-MEDITERRANEAN REGION

Georgia DIAKOGIANNI, Gerassimos PAPADOPOULOS, Anna FOKAEFS and Antonia PAPAGEORGIOU

National Observatory of Athens, Institute of Geodynamics, Athens, Greece, gdiakogianni@noa.gr

The tsunami catalogue in the European and Mediterranean region has been systematically revised since the beginning of 1990's through several research initiatives, mainly the EU projects GITEC GITEC-TWO TRANSFER and with the contribution of many scientists from

several institutes.

Currently the EUFP7 ASTARTE tsunami research project is on going in this field.

The region of research in this study

Following previous EU projects we consider the following subregions:

M1, M2, M3= Mediterranean Sea, including Gulf of Cadiz , BS= Black Sea , AT= Atlantic, NS= North Sea , NW =Norway

The research is still on going because:

New historical tsunami events are revealed
 Event parameters are revised by new techniques

In order to promote information useful for tsunami hazard and risk assessment, there is a need to **compile a new tsunami catalogue**, as much as:

Complete
Homogeneous
Accurate

1. New historical events were added

In the Mediterranean and associated seas (Marmara Sea, Black Sea, Azov Sea, SW Iberia) Also in the NE Atlantic and the North Sea

2. Assignment of intensities

For each tsunami event, applying the 12-point Papadopoulos- Imamura (2001) Intensity scale, for reasons of homogeneity and accuracy.

An example of the new quick-look Tsunami

_														
ID	Year	Month	Day	Lat	Long	Intensity k	Intensity K	Source Region	Source type	Magnitude	Intensity	Source Subregion	localities of observation	reliability
1	365	7	21	35.12	23.12	5	10	М1	ER	8.3 (±0.3)	8+	SW Crete Island	Methoni, Panephysis,Epidavros, Phalasarna, Balos, East Alexandria, Dalmatian coast	4
2	544			43.12	28.18	4-5	9	BS	ER	7.5(±0.5)	9	Bulgarian coast and Saros Bay	Odessus, Dionysopolis and Aphrodisium	4
3	556			37.00	27.36	4	8	M1	ER	7	10	Dodecanese islands	Cos island	3
4	1564	7	20	44.01	7.17	2	3	M2	EA	5.8	8.5	Liguria-Côte d'Azur	Antibes	4
5	1633	11	5	37.43	20.52	3	5	M1	ER	7	9	Zakynthos island, Ionian Sea	Laganas (Zakynthos island)	3
6	1755	11	1	36.42	-9.48	6	9	АТ	ER	8.5	11.5	SWIT		4
7	1790	10	9	35.25	0.21	3	5	МЗ	EA		10	Algeria	Spain- North Africa coasts	3
8	2012	6	10	36.25	28.53		3	M1		Mw=6	7	Plimiri bay (SE Rhodes)	Fethiye	4

Distribution of events per source type

ER=submarine earthquake, *VO*= submarine eruption, *VS*=volcanic marine slide, *EA*= earthquake associated, *EL*=landslide earthquake, *VA*=volcano associated, *LS*= aseismic landslide ,*GS*=gravitational marine slide

Distribution of tsunamis in the several subregions

Tsunami sources in Eastern Mediterranean and Black Sea

Tsunami sources in Western Mediterranean and SW Iberia

M2_M3_AT

Frequency distribution of tsunami events according to the intensity, K

Cumulative number of events (entire region) / time

year

Cumulative number of events (subregions M1 and BS)/ time

ycar

Cumulative number of events (region M2-M3-AT) /time

Results

 The new quick-look tsunami catalogue contains 372 events in a homogeneous way as regards parameters such as subregion classification, intensity assignement in 12-point scale, source type, reliability of the event

> Intensity in 12-point scale was assigned to 258 out of 372 events

 The majority of tsunami events were caused by submarine earthquakes but volcanic eruptions and aseismic landslides also contributed

• The Hellenic Arc is the most active in tsunami generation

Results

• The catalogue is vastly incomplete for K<3

 Completeness increases drastically from the 16th century due to historical reasons

 Completeness increases possibly and from the beginning of 20th century, perhaps due to the development of monitoring systems.

Mega Earthquakes and Tsunamis in Subduction Zones: Forecasting Approaches and Implications for Hazard Assessment

Thank you!