Challenges for Forecasting Size and Time

for Future Great Earthquakes in Subduction Zone

Kenji Satake

Earthquake Research Institute, University of Tokyo

Outline

- 1. The 2011 Tohoku Earthquake
- 2. Long-term forecast in Japan before 2011
- 3. Long-term forecast in Japan after 2011
- 4. Great earthquakes in the world

Outline

1. The 2011 Tohoku Earthquake

2. Long-term forecast in Japan before 2011

3. Long-term forecast in Japan after 2011

4. Great earthquakes in the world

Large (M>7) Shallow (H<100 km) 1923-2013

GPS data and slip distribution

Large slip revealed by seafloor observations

The 2011 Tohoku earthquake

Slip Distribution from Seismological, Geodetic and Tsunami Data

Yoshida et al. (2011)

GSI (2011)

Satake et al. (2013)

The 2011 Tohoku Earthquake Tsunami

The 2011 Tohoku Earthquake Tsunami

Slip 0 2 4 6 8 10 12 14 16 18 20 22 (m)

Satake et al. (2013: BSSA)

Deep and Shallow Subfaults

Satake et al. (2013: BSSA)

Why wasn't it forecasted?

Why wasn't it forecasted?

Yamanaka and Kikuchi (2004)

Large (M>7) earthquakes

Outline

1. The 2011 Tohoku Earthquake

2. Long-term forecast in Japan before 2011

3. Long-term forecast in Japan after 2011

4. Great earthquakes in the world

Earthquake Research Committee

Long-term forecast

National Seismic Hazard Map

Earthquake Recurrence and Hazard Rate

Earthquake Occurrence

Interval between eq.

Future (e.g., in next 30 years) probability can be computed from past recurrence data

Long-term forecast of earthquakes

Long term forecast by ERC

Long-term forecast of earthquakes

Long term forecast by ERC

Supercycle of earthquakes

Seismologists assumed earthquake cycle (~35 years) from past records of two centuries and made forecast (99% in 30 years), but there seems to be a supercycle (~700 years) on top of it. Long-term forecast of earthquakes

Long-term forecast

- Based on earthquake recurrence in the last few centuries
- 99 % probability in next 30 years but smaller size (M~8)

March 11 earthquake was much larger (M=9.0)

- GPS data suggested such slip deficit
- March 9 earthquake was a foreshock
- Earthquake supercycle may exist

Outline

- 1. The 2011 Tohoku Earthquake
- 2. Long-term forecast in Japan before 2011
- 3. Long-term forecast in Japan after 2011
- 4. Great earthquakes in the world

Past Nankai Earthquakes (Historical Data)

M~8 earthquakes Have repeated At 90-150 yrs interval

Nankai Trough (Maximum Earthquake Size)

Past Nankai Earthquakes (Geological Data)

Long-term forecast of Nankai Earthquakes

Long-term forecast of Nankai Earthquakes

Historical data and tsunami deposits indicate variability of past earthquakes along Nankai trough

Various patterns such the entire part or a portion of seismogenic zone, or shallow part near trough axis are assumed

The 2011 Tohoku earthquake

Central Disaster Management Council (2011)

Scaling Relations for Giant Plate-boundary Eqs

Murotani et al., 2013; GRL

- Data 7 giant eq. in the world and 25 models of 10 eqs. in and around Japan.
- Scaling relations for seismic moment, rupture are, average slip, and asperity area.

- Mw and average slip from total area
- Asperity size from Mw
 Asperity: large and huge slip areas
- Variable location of asperities

Various Slip Distributions for Nankai Earthquake

Case 8

Case 9Case 10Case 11Huge (4 x average) slip area:0 - 10 %Large (2 x average) slip area:20 %

Cabinet Office, 2012

Tsunami Heights from Various Nankai Earthquakes

Huge (4 x average) slip area: 0 - 10 % Large (2 x average) slip area: 20 %

Cabinet Office, 2012

Damage (Loss) Estimate

Strong motion (seismic intensity)

Cabinet Office, 2012

Nuclear Regulation Authority

ERC forecast of large earthquakes in Sagami Trough

Earthquake Res. Comm. (Government of Japan) Long-term forecast of Large Eq. along Sagami Trough

Paleoseismological Evidence : Beach ridges : Tsunami **D**eposits Marine terrace 31 Kohzu-Matsuda Fault 宮田 茂原 富浦 南房総 古巴湾 小網代 古館山湾 100

If the 1495 event was Kanto earthquake

1293	—	1495	—	1703	—	1923
	202 ₃	/rs	20)8 yrs	220)yrs

Long-term forecast by Earthquake Research Committee (2014)

35

ERC 2014 forecast for M~7 earthquakes

ERC 2014 forecast for M~7 earthquakes

Outline

- 1. The 2011 Tohoku Earthquake
- 2. Long-term forecast in Japan before 2011
- 3. Long-term forecast in Japan after 2011
- 4. Great earthquakes in the world

Giant earthquakes in the world

Giant earthquakes in the world

Satake and Atwater (2007 Ann. Rev. Earth Planet .Sci.) updated

Time and slip predictable models

Modified from Shimazaki and Nakata (1980) ⁴¹

Maximum earthquake size

McCaffrey (2008) Global frequency of M 9 earthquakes

Figure 1. Map of world's major subduction zones (thick gray lines) and tectonic plate boundaries (Bird, 2003). Filled circles show locations of known earthquakes of $M_w \ge 7.5$ or greater since 1900 (circle radius and grayscaled by magnitude). Open circles are largest known earthquakes from A.D. 1700 to 1900 (compiled by Stein and Okal, 2007). Arrows show horizontal velocity of subducting plate relative to overriding plate. Dates are given for all M9 quakes.

Faster subduction \Rightarrow shorter recurrence interval \Rightarrow more chance to be observed Slower subduction \Rightarrow longer recurrence interval \Rightarrow less chance to be observed₄₃

Kagan and Jackson (2013) Tohoku earthquake: A surprise ?

- Observed (Global CMT catalog)Gutenberg-Richter
- ----- Tapered GR $m_c^s = 9.4$
- Tapered GR $m_c^s = 8.7$

Maximum likelihood estimate of parameters β and m_c

Kagan and Jackson (2013) Tohoku earthquake: A surprise ?

Global catalogs for different period

- (A) 1977-1995
- (B) 1977-2010
- (C) 1900-1976

Longer period give larger m_o and m_c m_o : observed magnitude m_c : corner magnitude

Summary

- The 2011 Tohoku earthquake was the largest (M~9) in Japan's written history. It was a combination of the 869 Jogan-type source and the 1896 "tsunami earthquake" type events.
- Long-term forecast, based on characteristic earthquake mode, estimated 99 % probability but M~8 in Miygaioki.
- Variability in earthquake recurrence, including the estimate of probable maximum size, need to considered in long-term forecast.

Methods of M_{max} Estimation East of the Rocky Mountains

R.L. Wheeler

USGS Open File Report 2009-1018

- 1. Mmax equals Largest Observed M in a Source Zone (Mobs)
- 2. Mmax equals Mobs plus an Increment
- 3. Mmax from Seismicity Rate
- 4. Mmax from Magnitude-Frequency Extrapolation of Historical Record
- 5. Mmax from the Saturation Magnitude of Mb, approximately 7.5
- 6. Mmax from Local Geologic Features
- 7. Mmax from North American Tectonic Analogs
- 8. Mmax from Global Tectonics Analogs
- 9. Mmax from Baysian Method
- 10. Mmax from Physical Principles
- 11. Mmax from Statistical Approaches
- 12. Mmax from Pattern Recognition
- 13. Mmax from Crustal Lg Coda Q at 1Hz (Qo)

Pros and Cons: past events

Method	Pros	Cons
1. Mmax = Mobs	The Mobs method is simple. It can be applied anywhere. It provides an unarguable lower bound for Mmax.	 (1) Short historical records produce samples of seismicity that are too small to constrain Mmax. (2) Results of the Mobs method are inconsistent with paleoseismic findings, which show Mmax exceeding Mobs by as much as approximately 2.1- to 3.2-M units.
2. Mmax = Mobs + an increment	The increment method is simple. It can be applied anywhere.	(1) Short historical records produce samples of seismicity that are too small to constrain Mmax. (2) Results of the increment method are inconsistent with paleoseismic findings, which imply increments that range from approximately zero to 3.2.

Pros and Cons: Seismicity

Method	Pros	Cons
3. Seismicity rates	A high moment-release rate may smooth and link faults faster, and allow larger rupture zones and slips than in less seismically active areas.	(1) The argument from fault smoothing and linking may apply to plate boundaries, but it is unclear whether it applies to stable continental regions (SCRs). (2) Even if the seismicity-rate method is valid in SCR, it does not appear to apply below Mmax of approximately 7.0. (3) Above Mmax 7.0, paleoseismic studies can provide support for Mmax estimates.
4. Extrapolation of the historical record by a magnitude- frequency graph	The extrapolation method calculates the M that would recur at whatever recurrence interval is specified, such as 1,000 years. The method is simple and it can be applied anywhere	(1) The extrapolation method gives results that vary with the size of the study area and the specified recurrence interval. (2) Results of the method are inconsistent with paleoseismically determined recurrence intervals of large earthquakes.
5. Saturation value of mb	This is approximately 7.5 globally.	Moment magnitude does not saturate and is preferred for moderate and large earthquakes.

Pros and Cons: Tectonics

Method	Pros	Cons
6. Local geologic features	An area with distinctive geology, faults, or geophysical anomalies might have distinctive fault properties that could control rupture- zone size, such as fault lengths, widths, strengths, or orientations.	(1) Short historical records of small source zones produce small samples of seismicity, which can be too sparse to clearly show long-term spatial associations between seismicity and geologic features. (2) Few CEUSAC earthquakes have been linked to specific faults or systems of faults. (3) The geologic controls on SCR rupture propagation are enigmatic
7. North American tectonic analogs	 (1) The arguments in favor of the method of North American tectonic analogs include those favoring the local-geology method. (2) Including all North American tectonic analogs of a CEUSAC source zone could capture larger earthquakes, providing a higher lower bound to 	(1) The arguments against the method of North American tectonic analogs are the same as those against the local-geology method. However, the arguments are weaker because the seismicity sample of the combined analog areas is larger. (2) The meaning of "analog" is unclear.

Pros and Cons: Tectonics

Method	Pros	Cons
8. Global tectonic analogs	(1) The arguments in favor of the methods of local geologic features and of North American tectonic analogs apply here as well. (2) Including all global tectonic analogs of a CEUSAC source zone produces the largest possible sample of historical seismicity and makes capture of some true Mmax values more likely than with any smaller sample.	The meaning of "analog" is unclear.
9. Bayesian method	(1) The arguments in favor of the methods of global tectonic analogs apply here as well. (2) Including all global tectonic analogs of a CEUSAC source zone produces the largest possible sample of historical seismicity and makes capture of some true Mmax values more likely than with any smaller sample. (3) Separation of the analysis into specification of a prior distribution and a likelihood function can	(1) The meaning of "analog" is unclear. (2) The prior distribution is partly subjective, which can hinder its explanation and justification.

Pros and Cons: Others

Method	Pros	Cons
10. Arguments from physical principles	The arguments support the existence of an Mmax that could vary locally or regionally.	(1) Short historical records produce samples of seismicity that are too small to constrain Mmax. (2) The physics of rupture propagation in SCR crust may be poorly understood. (3) Few SCR areas have had earthquakes large enough to be recognized as Mmax. All three factors impede testing of physical theories.
11. Statistical methods	The methods do not require understanding of the physics or geologic controls on SCR rupture propagation.	(1) Short historical records produce small samples of seismicity. (2) Few SCR areas have had earthquakes large enough to be taken as Mmax. Both factors impede testing of statistical models.
12. Pattern recognition	The method does not require understanding of the physics or geologic controls on SCR rupture propagation.	Few SCR areas have had earthquakes large enough to be taken as Mmax. This impedes testing results of pattern recognition.
13. Q0	Q0 varies inversely with	(1) Results of the Q0 method are