A GLOBAL SURGE OF TSUNAMIGENIC EARTHQUAKE RUPTURES AND HOW WE ARE QUANTIFYING THEM

Thorne Lay, University of California Santa Cruz

Great ($M_w \ge 8$) events from Dec. 2004-Apr. 2014

[Lay, 2014]

after, Ammon et al., SRL, 2010

Resolutions of Joint inversion

Spatial Resolution

Time Resolution

Eurasian Plate

North Korea Pyongyang

South Korea

-

Hirado-shima

Shikoku

Kyushu

Tanega-shima

673 km

© 2011 ZENRIN © 2011 Geocentre Consulting © 2011 Europa Technologies © 2011 Mapabe.com

lapan

Tokyo 合東京

North American Plate

> 9 cm/yr 3.5"/yr

> > Pacific Plate

> > > Google

Aseismic model with near-trench slip can fit GPS statics well. Quasi-seismogeodesy.

Lay et al., EPS, 2011

The GPS ground motions record both the arrivals of all seismic waves and the permanent deformations (offsets) of the ground.

Yue and Lay, GRL, 2011

Many studies now confirm that slip in the uppermost 80 km of the megathrust is as much as 60-80 m.

Shallow rupture resembles tsunami earthquake ruptures.

[Yue and Lay, 2013]

[[]Yue and Lay, 2013]

[Lay and Kanamori, 2012]

Yamazaki et al., BSSA, 2013

Yamazaki et al., BSSA, 2013

2010 Mentawai tsunami earthquake: Up-dip rupture from 2007 Sumatra events

[Yue et al., 2014a]

Iterative modeling of tsunami dataset

00:30:00

100+ (cm)

[Yue et al., 2014a]

Relatively low propagation velocity of Tsunami waves

0

00.04.30

 $v = \sqrt{gh} \sim 200 \text{ m/s}$

00:01:20

Arrivals of patches 40 km appart is separated by 200s

Coarse Grid Tsunami GFs Fine Grid Tsunami GFs

[Yue et al., 2014c]

Along dip distance from hypocenter, km

[Yue et al., 2014c]

[[]Yue et al., 2014c]

Feb. 27, 2010 Chile M_w 8.8

Filling the 1835 seismic gap? But it went well beyond that...

Updated From: Lay et al., GRL, 2010

Geodetic motions before Feb. 27, 2010 Chile

Moreno et al., Nature, 2010

Observations of 2010 $M_w = 8.8$ Maule earthquake

[Yue et al. 2014b]

Original GF

Corrected GF

Checker board test of each dataset and joint inversion

[Yue et al. 2014b]

Preferred rupture model of 2010 Maule earthquake

[Yue et al. 2014b]

Complementary pattern with the aftershock distribution

[Yue et al. 2014b]

Great Earthquake Scenarios

Variable frictional properties seem ubiquitous

Conclusions

Great earthquake ruptures and associated pre-seismic and post-seismic are now being quantified in unprecedented detail.

This results from systematic deployment of global seismic, geodetic, and tsunami instrumentation that is largely openly available, in parallel with extensive development of finitefaulting inversion capabilities for all wavefields.

Comprehensive modeling of all ground motions, including dynamic and static threecomponent motions is viable and yields best constrained solutions.

We need to prepare for future great earthquakes

Shallow Earthquakes (Depth \leq 100 km), Magnitude \geq 7.0

9

From: Ammon, Lay, Simpson, 2010

Beam-forming using teleseismic body waves and surface wave source time functions

(Yue et al. 2012)

2006-2007 Kuril Doublet: Mw 8.1 normal after Mw 8.4 thrust. Trench-slope stress cycled from compressional to extensional to compressional

Lay et al., JGR (2009)

Kuril Islands Great Doublet

Furlong et al., Science (2009)

April 1, 2007 Solomon Islands Earthquake M_w=8.1 Rupture Across a Triple Junction Great events along southern Peru megathrust: Ruptures triggering large second rupture with complex expansion.

Lay, et al., BSSA, 2010

74°W 73°W 72°W 71°W

2009 Samoa-Tonga Triggered Doublet (M_w 8.0, 8.0)

Lay et al., Nature (2010)

Models for 2004 Sumatra

2004 Sumatra was the first event for which back-projection of dense network signals to image coherent sources of short-period radiation was performed (by Ishii et al. 2005, and Krüger and Ohrnberger, 2005). Slip and short-period coherent power do NOT correlate spatially in detail.

2004 prompted geophysicists to 'tune-up' algorithms to handle very long duration, extended fault. Solutions developed using seismic, geodetic, tsunami, and joint data sets came out after several months/years. Initiated upgrade of DART system in Pacific.

Recent Huge Events With "Surprises"

2004 Sumatra M_w 9.2; ruptures 1300+ km long, massive tsunami 2005 M_w 8.7, 2007 8.5, 7.9 'clustered' events along Sumatra

2006 Kuril M_w 8.4 thrust; triggers 2007 Kuril M_w 8.1 normal

2007 Peru M_w 8.0 devastates Pisco; triggered by 7.8 initial rupture

2007 Solomon Island M_w 8.2; rupture across triple junction

2008 Wenchuan M_w 7.9; unexpected thrusting

2009 Samoa M_w 8.1 normal faulting; triggers Tonga M_w 8.0 thrust

2010 Chile M_w 8.8 ruptures beyond "Darwin Gap"

2010 Mentawai M_w 7.8 tsunami earthquake updip of 2007 8.5/7.9 Sumatra

2011 Tohoku M_w 9.0 ruptures entire megathrust, slip up to 60 m

2012 Indo-Australia M_w 8.7, 8.2 ruptures 5 fault grid- largest intraplate strike-slip

2013 Sea of Okhotsk M_w 8.3 largest/longest/most energy deep earthquake ever

- 12°
 - 1. The largest (Mw=8.6) strike slip event seismically recorded.
 - 2. The largest intra-plate event seismically recorded.
 - 3. Complex faulting-5 faults involved.
- 0°• 4. Complex aftershock location.

[Yue et al., 2012]

Finite fault model on multiple fault segments

[Yue et al., 2012]

The February 6, 2013 M_w 8.0 Santa Cruz Islands earthquake and Tsunami

Thorne Lay, Lingling Ye, Hiroo Kanamori, Yoshiki Yamazaki, Kwok Fai Cheung Australian Plate

Lay et al., Tectonophysics, 2013

Lay et al., Tectonophysics, 2013

The October 28, 2012 M_w 7.8 Haida Gwaii Underthrusting Earthquake and Tsunami: Slip Partitioning Along the Queen Charlotte Fault Transpressional Plate Boundary

T. Lay, UCSC

w/L.Ye, H. Kanamori, Y. Yamazaki, K. F. Cheung, K. D. Koper, K. B. Kwong

Hadia Gwaii Final Slip Model

Surface Vertical Displacement

Local Peak Tsunami

Local tsunami is reported to have Up to 8-9 m run-up in some inlets.

(Lay et al., EPSL, 2013)

Sea Surface Peak Amplitudes for preferred model from iterative seismic/tsunami modeling. NOAA DART buoys give excellent deep water tsunami records along Alaska/Aleutians and to the south, as well as near Hawaii. also have good quality tide-gauge recordings in Hawaii.

DART data and model predictions in red for the final iterative model.

⁽Lay et al., EPSL, 2013)

SCENARIO 1

Strike-slip margin with detatched orthogonally underthrusting slab

(Smith et al., 2003)

QCF may have strike- `slip rupture (1949?).

Strong seismic coupling at depth

SCENARIO 2

Coupled sedimentary terrace with aseismic QCF, weakly coupled deep interface Weak seismic coupling of QCF

(Lay et al., EPSL, 2013)

Sumatra-Sunda

Struck by a 'cluster' of great/very large earthquakes since 2004.

Dec. 26, 2004 – 'unexpected' northward extension to Andaman Islands. 9.2

March 2005 – adjacent 'aftershock'. 8.6

July 2006 – Java tsunami earthquake. 7.8

Sept. 2007 – Kepulauan pair. 8.5, 7.9

Oct. 2010 – Mentawai tsunami earthquake. 7.8

Similar to Alaska-Aleutians sequence of 1946, 1957, 1964, 1965

Where will the next one be? - 1797 'gap'? Sumatran Fault? Sumba potential?

3000

Differences from previous inversion results

[Yue et al. 2014b]

Input Model Vr=1.5 km/sec

Vr=1.5 km/sec

200

Distance Along Strike, km

400

Distance Along Dip, km 007 001 0

0

Vr=2.5 km/sec

STFs

Joint

[Yue and Lay, 2013]

Earthquake	Year	Used Dataset						Publications
		Hr- GPS	Teleseis mic	STF/ surface waveS	Static GPS	InSAR / Landsat	Tsunami	
Tohoku	2011	х	х	Х			0	Yue and Lay, 2011,2013 Yamazaki et al, 2011
Indo- Australia	2012	х	x	Х				Yue et al, 2012; Hill et al, in prep
Costa Rica	2012	Х	Х	Х	Х			Yue et al, 2013a
Craig	2013	х	Х	Х				Yue et al, 2013b
Mentawai	2010	Х	х				0	Yue et al, 2014a
Iquique	2014		х				х	Lay et al, 2014
Maule	2010	Х	х			Х	Х	Yue et al, 2014b
Pakistan	2013		х			Х		Sun et al, in prep

indicates datasets used in inversion

Indicatesdataset compared with forward modeling